Let y=sin−1(12)
⇒siny=12
⇒siny=sin(π6)
Range of principal value of sin−1 is [−π2,π2]
∴y=π6
Now,
tan−1[2cos(2sin−112)]=tan−1[2cos(2×π6)]
tan−1[2cos(2sin−112)]=tan−1[2cosπ3]
tan−1[2cos(2sin−112)]=tan−1[2×12]
tan−1[2cos(2sin−112)]=tan−1[1]
tan−1[2cos(2sin−112)]=tan−1[tanπ4]
tan−1[2cos(2sin−112)]=π4