The correct option is D 23
We know that
sec2 θ−tan2 θ = 1 and cosec2 θ− cot2 θ= 1.∴ tan2 (sec−1 3) + cot2 (cosec−1 4)= sec2(sec−1 3) − 1 + cosec2 (cosec−1 4) − 1= (sec(sec−1 3))2 + (cosec(cosec−1 4))2 − 2
Since, sec(sec−1θ) = θand cosec(cosec−1θ) = θ for all θ∈(−∞, −1] ∪ [1, ∞)Therefore, tan2 (sec−1 3) + cot2 (cosec−1 4)= (3)2 + (4)2 − 2= 23.