The correct option is
A 5tanθ−10tan3θ+tan5θ1−10tan2θ+5tan4θtan5θ=tan(tan3θ+2θ)=tan3θ+tan2θ1−tan3θtan2θ
( Using tan(A+B)=tanA+tanB1−tanAtanB)
=3tanθ−tan3θ1−3tan2θ+2tanθ1−tan2θ1−(3tanθ−tan3θ1−3tan2θ)(2tanθ1−tan2θ)
( Using tan3x=3tanx−tan3x1−3tan2x and tan2x=2tanx1−tan2x)
=(3tanθ−tan3θ)(1−tan2θ)+(1−3tan2θ)(2tanθ)(1−3tan2θ)(1−tan2θ)−(3tanθ−tan3θ)(2tanθ)
=3tanθ−3tan3θ−tan3θ+tan5θ+2tanθ−6tan3θ1−tan2θ−3tan2θ+3tan4θ−6tan2θ+2tan4θ
=tan5θ−10tan3θ+5tanθ5tan4θ−10tan2θ+1