Find the value of tan A + 2 tan2A + 4 tan4A + 8 cot 8A
cotA
Tan A + 2 tan2A + 4 tan4A + 8 cot 8A
We observe that in each term,angle is getting doubled.
8A can be written as 2 × 4A
tan A + 2 tan2A + 4 tan4A + 8 cot 2 × 4A
= tan A + 2 tan2A + 4 tan4A + 8 × (1−tan24A)2tan4A
= tanA + 2tan2A + 8.tan4A.tan4A+8−8tan24A2tan4A
= tanA + 2tan2A + 8.tan24A+8−8tan24A2tan4A
= tanA + 2tan2A + 82tan4A
= tanA + 2tan2A + 4(1−tan22A)2tan2A
= tanA + 42tan2A
= tanA + 4tan2A = tanA + 2(1−tan2A)2tanA
= 2tan2A+2−2tan2A2tanA=22tanA=cotA