We have,
tan{12sin−1(2x1+x2)+12cos−1(1−y21+y2)}
Put x=y=tanθ
Then, θ=tan−1x=tan−1y
tan{12sin−1(2x1+x2)+12cos−1(1−y21+y2)}
=tan{12sin−1(2tanθ1+tan2θ)+12cos−1(1−tan2θ1+tan2θ)}
=tan{12sin−1sin2θ+12cos−1cos2θ}
=tan{12×2θ+12×2θ}
=tan2θ
=2tanθ1−tan2θ
=2x1−x2=2y1−y2