To simplify:
[tan(12cos−1√53)]
Let x=12cos−1√53
Then tanx=? ……… (1)
x=12cos−1√53
2x=cos−1√53
⇒cos2x=√53
⇒2cos2x−1=√53
⇒2cos2x=√53+1
⇒2cos2x=√5+33
⇒cos2x=√5+36
⇒cosx=√√5+36
⇒cosx=√√5+3√6=BaseHypotenouse
But,
tanx=prependicularbase
By Pythagoras theorem,
Hypotenouse2=Base2+Prependicular2
tanx=√3−√5√√5+3
x=tan−1√3−√5√√5+3
Put in equation (1).
=tan(tan−1√3−√5√√5+3)
=√3−√5√√5+3×√3−√5√3−√5
=3−√5√9−5
=3−√5√4
=3−√52
Hence, this is the answer.