Consider the given integral.
I=∫π0|√2sinx+2cosx|dx
Solve the definite integration.
I=∫π0|√2sinx+2cosx|dx
=∫π20(√2sinx+2cosx)dx+∫ππ2(−√2sinx−2cosx)dx
=∫π20(√2sinx+2cosx)dx+∫ππ2(√2sinx+2cosx)dx
=(−√2cosx+2sinx)π20+(−√2cosx+2sinx)ππ2
=((−√2cosπ2+2sinπ2)−(−√2cos0+2sin0))+((−√2cosπ2+2sinπ2)−(−√2cosπ+2sinπ))
=6.82
Hence, this is the required result.