wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of the determinant ∣∣ ∣ ∣∣cos(x−y)cos(y−z)cos(z−x)cos(x+y)cos(y+z)cos(z+x)sin(x+y)sin(y+z)sin(z+x)∣∣ ∣ ∣∣

A
2sin(xy)sin(yz)sin(xz)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
4sin(xy)sin(yz)sin(xz)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
8sin(xy)sin(yz)sin(xz)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 2sin(xy)sin(yz)sin(xz)
∣ ∣ ∣cos(xy)cos(yz)cos(zx)cos(x+y)cos(y+z)cos(z+x)sin(x+y)sin(y+z)sin(z+x)∣ ∣ ∣
R1R1R2
=2∣ ∣ ∣sinxsinysinysinzsinxsinzcos(x+y)cos(y+x)cos(z+x)sin(x+y)sin(y+z)sin(x+z)∣ ∣ ∣
R2R1+R2
=∣ ∣ ∣sinxsinysinysinzsinxsinzcosxcosycosycosxcosxcoszsin(x+y)sin(y+z)sin(x+z)∣ ∣ ∣
Taking sinxsiny common from C1, sinysinz from C2, sinxsinz from C3.

=2sin2xsin2ysin2z∣ ∣111cotxcotycotycotzcotzcotxcotx+cotycoty+cotzcotz+cotx∣ ∣
[sin(x+y)sinxsiny=cotx+coty]
C1C1C2,C2C2C3
=2sin2xsin2ysin2z∣ ∣ ∣001coty(cotxcotz)cotz(cotycotx)cotzcotxcotxcotzcotycotxcotz+cotx∣ ∣ ∣
Taking (cotxcotz) common from C1 and cotycotx common from C2
=2sin2xsin2ysin2z(cotxcotz)(cotycotx)∣ ∣001cotycotzcotzcotx11cotz+cotx∣ ∣
On expanding, we get
=2sin2xsin2ysin2z(cotxcotz)(cotycotx)(cotycotz)
=2sin(xy)sin(yz)sin(xz)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon