The correct option is
C 2sin(x−y)sin(y−z)sin(x−z)∣∣
∣
∣∣cos(x−y)cos(y−z)cos(z−x)cos(x+y)cos(y+z)cos(z+x)sin(x+y)sin(y+z)sin(z+x)∣∣
∣
∣∣R1→R1−R2=2∣∣
∣
∣∣sinxsinysinysinzsinxsinzcos(x+y)cos(y+x)cos(z+x)sin(x+y)sin(y+z)sin(x+z)∣∣
∣
∣∣
R2→R1+R2
=∣∣
∣
∣∣sinxsinysinysinzsinxsinzcosxcosycosycosxcosxcoszsin(x+y)sin(y+z)sin(x+z)∣∣
∣
∣∣
Taking sinxsiny common from C1, sinysinz from C2, sinxsinz from C3.
=2sin2xsin2ysin2z∣∣
∣∣111cotxcotycotycotzcotzcotxcotx+cotycoty+cotzcotz+cotx∣∣
∣∣
[∴sin(x+y)sinxsiny=cotx+coty]
C1→C1−C2,C2→C2−C3
=2sin2xsin2ysin2z∣∣
∣
∣∣001coty(cotx−cotz)cotz(coty−cotx)cotzcotxcotx−cotzcoty−cotxcotz+cotx∣∣
∣
∣∣
Taking (cotx−cotz) common from C1 and coty−cotx common from C2
=2sin2xsin2ysin2z(cotx−cotz)(coty−cotx)∣∣
∣∣001cotycotzcotzcotx11cotz+cotx∣∣
∣∣
On expanding, we get
=2sin2xsin2ysin2z(cotx−cotz)(coty−cotx)(coty−cotz)
=2sin(x−y)sin(y−z)sin(x−z)