Let Δ=∣∣
∣
∣∣√13+√32√5√5√15+√265√103+√65√155∣∣
∣
∣∣
=∣∣
∣
∣∣√32√5√5√155√103√155∣∣
∣
∣∣+∣∣
∣
∣∣√132√5√5√265√10√65√155∣∣
∣
∣∣
Taking common from 1st determinant √3,√5,√5 from C1,C2,C3 respectively and
Taking common from 2nd determinant √13,√5,√5 from C1,C2,C3 respectively, we get
=√3×√5×√5∣∣
∣
∣∣121√5√5√2√3√3√5∣∣
∣
∣∣+√13×√5×√5∣∣
∣
∣∣121√2√5√2√5√3√5∣∣
∣
∣∣
=√3×5∣∣
∣
∣∣121√5√5√2√3√3√5∣∣
∣
∣∣+0 (∵C1 and C2
are indentical)
=5√3∣∣
∣
∣∣121√5√5√2√3√3√5∣∣
∣
∣∣
Applying C2→C2−C1
∴Δ=5√3∣∣
∣
∣∣111√50√2√30√5∣∣
∣
∣∣
Expanding along C2
∴Δ=5√3⋅(01)∣∣∣√5√2√3√5∣∣∣
=−5√3(5−√6)
=−25√3+15√2
=15√2−25√3
⇒b−a=10