Applying the identities of trigonometry in tan12[sin−1(2x1+x2)+cos−1(1−y21+y2)].
tan12[sin−1(2x1+x2)+cos−1(1−y21+y2)]=tan12[2tan−1x+2tan−1y]
=tan12[2(tan−1x+tan−1y)]
=tan12×2(tan−1x+y1−xy)
=x+y1−xy
Find the value of the following:
tan12[sin−12x1+x2+cos−11−y21+y2],|x|<1,y>0 and xy<1