Find the value of the following expression:
cos 38o cosec 52otan 18o tan 35o tan 60o tan 72o tan 55o .
Given:
cos 38o× cosec 52otan 18o× tan 35o× tan 60o× tan 72o× tan 55o
=cos(90−52)o× cosec52otan(90−72)o× tan(90−55)o× tan60o ×tan72o ×tan55o
We know that, cos(90−θ)o=sin θ and tan(90o−θ)=cot θ.
=sin52o×cosec52ocot72o×cot55o×tan60o×tan72o×tan55o
(cosec θ=1sin θ, cot θ=1tan θ)
=sin52o×1sin52o1tan72o×1tan55o×tan60o×tan72o×tan55o
By cancelling out the common terms in both numerator and denominator, we get,
=1tan60o
=1√3 (∵tan 60∘=√3)
Hence, cos 38o× cosec 52otan 18o× tan 35o× tan 60o× tan 72o× tan 55o=1tan60o=1√3