Find the value of the following expression.
tan 82∘cot 8∘+cosec 38∘sec 52∘+2 sin 35∘sec 55∘sin250∘+sin240
4
Given:
tan 82∘cot 8∘+cosec 38∘sec 52∘+2 sin 35∘sec 55∘sin250∘+sin240
=tan(90∘−8∘)cot 8∘+cosec(90−52∘)sec 52∘+2 sin 35∘sec(90∘−35∘)sin250∘+sin2(90∘−50∘)
We know that,
tan (90o−θ)=cot θ,cosec(90o−θ)=secθsec(90o−θ)=cosecθsin(90o−θ)=cosθ
On applying these equations we get,
=cot 8∘cot 8∘+sec 52∘sec 52∘+2 sin 35∘cosec 35∘sin250∘+cos250∘
=1+1+2(1)1.....(∵sinθ=1cosecθ and sin2θ+cos2θ=1)
=1+1+2
=4