The correct option is B −cos267∘
sin17∘sec73∘−cosec267∘sec245∘−tan23∘ tan67∘+cot267∘
sin17∘sec(90∘−17∘)−cosec267∘sec245∘−tan23∘ tan(90∘−23∘)+cot267∘ [sec(90−θ)=cosec θ,tan(90−θ)=cot θ]
sin17∘cosec 17∘−cosec267∘sec245∘−tan23∘ cot23∘+cot267∘
[sinθcoscθ=1,tanθcotθ=1]
1−cosec267∘2−1+cot267∘
1−cosec267∘1+cot267∘ [cosec2θ=1+cot2θ]
−cot267∘cosec267∘
−cos267∘sin267∘1sin267∘
[cotθ=cosθsinθ,cosecθ=1sinθ]
−cos267∘