Find the value of the given expression. 3(sinx−cosx)4+6(sinx+cosx)2+4(sin6x+cos6x)
A
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C For ease of use, replacing x with θ : 3×(sin2θ+cos2θ−(2×sinθ×cosθ))2+6×(sin2θ+cos2θ+(2×sinθ×cosθ))+4×(sin2θ+cos2θ)×(sin4θ+cos4θ−(sin2θ×cos2θ)) =3×(1−2sinθ×cosθ)2+6×(1+2sinθ×cosθ)+4×(1)×(sin4θ+cos4θ+2sin2θ×cos2θ−3sin2θ×cos2θ) =3(1+4sin2θ×cos2θ−4sinθ×cosθ)+6+12sinθ×cosθ+4×((sin2θ+cos2θ)2−3sin2θ×cos2θ) =3+12sin2θ×cos2θ−12×sinθ×cosθ+6+12×sinθ×cosθ+4×(1−3sin2θ×cos2θ) =9+12sin2θ×cos2θ+4−12sin2θ×cos2θ =13