wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of the integral 1+2cosx2+cosx2dx from 0 to π2.


Open in App
Solution

Solve the above integral.

The given integral is 1+2cosx2+cosx2dx

Assume that, I=0π21+2cosx2+cosx2dx

I=0π21+2cosx2+cosx2dxI=0π2sin2x+cos2x+2cosx2+cosx2dx[sin2x+cos2x=1]I=0π2sin2x+cosxcosx+22+cosx2dxI=0π2cosx2+cosxdx+0π2sin2x2+cosx2dx

Assume that, I1=0π2cosxcosx+2dx

I1=1cosx+20π20π2cosxdx-0π2d1cosx+2dxcosxdxdxI1=sinxcosx+20π2-0π2--sinx2+cosx2sinxdxI1=sinxcosx+20π2-0π2sinx2+cosx2sinxdx

So, I=I1+0π2sin2x2+cosx2dx

I=sinxcosx+20π2-0π2sinx2+cosx2sinxdx+0π2sinx2+cosx2sinxdxI=sinxcosx+20π2I=sinπ2cosπ2+2-sin0cos0+2I=10+2-01+2I=12

Hence, the required final answer is 12.


flag
Suggest Corrections
thumbs-up
4
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Formulae 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon