Find the value of the integral 1+2cosx2+cosx2dx from 0 to π2.
Solve the above integral.
The given integral is 1+2cosx2+cosx2dx
Assume that, I=∫0π21+2cosx2+cosx2dx
I=∫0π21+2cosx2+cosx2dx⇒I=∫0π2sin2x+cos2x+2cosx2+cosx2dx[∵sin2x+cos2x=1]⇒I=∫0π2sin2x+cosxcosx+22+cosx2dx⇒I=∫0π2cosx2+cosxdx+∫0π2sin2x2+cosx2dx
Assume that, I1=∫0π2cosxcosx+2dx
I1=1cosx+20π2∫0π2cosxdx-∫0π2d1cosx+2dx∫cosxdxdx⇒I1=sinxcosx+20π2-∫0π2--sinx2+cosx2sinxdx⇒I1=sinxcosx+20π2-∫0π2sinx2+cosx2sinxdx
So, I=I1+∫0π2sin2x2+cosx2dx
I=sinxcosx+20π2-∫0π2sinx2+cosx2sinxdx+∫0π2sinx2+cosx2sinxdx⇒I=sinxcosx+20π2⇒I=sinπ2cosπ2+2-sin0cos0+2⇒I=10+2-01+2⇒I=12
Hence, the required final answer is 12.
Evaluate the value of following:-
111+411+311+211
Evaluate the value of following :-
25-65+75
Integrate ∫0π2logsinxdx.
Find the sum:-
511+23
The value of m for which [{(172)-2}-13]14=7m is: