Find the value of θ, if the equation cos θ x2−2sin θ x−cos θ=0 has real roots
−π4
π2
−π3
π4
Discriminant =4(−2sinθ)2−4×cosθ×(−cosθ)) =16sin2θ+4cos2θ =4(sin2θ+cos2θ)+12sin2θ =4+12sin2θ ⇒△>0 ⇒ Given equation has real roots for all value of θ