wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of θ(1+sec20)(1+sec40)(1+sec80), when θ=π32,

Open in App
Solution

Θ[(1+sec20o)(1+sec40o)(1+sec80o)]
=Θ[(11+cos20o)](1+cos40o)(1+cos80o)(1cos40ocos80ocos20o)]
=Θ[(2cos210)(2cos220)(2cos240)1cos40ocos80ocos20o]
Θ[8cos210cos220cos240cos40cos80cos20]
=Θ[8cos10cos20cos40(cos10ocos80o)](cos80o=sin10o)
=Θ[8cos10cos20cos40cot10]
=Θ[8cos10cos20cos(6020)cos(60+20)cot10cos80]
=Θ[8cos10o14cos60ocot10ocos80]
=Θ[10ocos80ocot10o]=cos10sin10cot10=cot210
cot(10)=5.67128182
cot310o=32.160
Θcot210o[also, Θ=π32]
π32(32.160)
8032×32.160=5788.832
=180.9


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving QE using Quadratic Formula
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon