wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of θ satisfying ∣ ∣11sin 3θ43cos 2θ772∣ ∣ = 0

Open in App
Solution

We have, ∣ ∣11sin 3θ43cos 2θ772∣ ∣
∣ ∣01sin 3θ73cos 2θ1472∣ ∣=0 [C1C1C2]
7∣ ∣01sin 3θ13cos 2θ272∣ ∣=0 [taking 7 common from C1]
7[01(22 cos 2θ+sin 3θ(76)]=0 [expanding along R1]
7[2(1cos 2θ)+sin 3θ]=014+14 cos 2θ+7 sin 3θ=014 cos 2θ+7 sin 3θ=1414(12 sin2θ)+7(3 sin θ4 sin3θ)=1428 sin2θ+14+21 sin theta28 sin3θ=1428 sin3θ+28 sin2θ21 sinθ=04 sin3θ+4 sin2θ3 sinθ=0sin θ(4 sin2θ+4 sinθ3)=0Either sin θ=0θ=nπ or 4 sin2θ+4 sinθ3=0sin θ=4±16+488=4±648=4±88=48,128sin θ=12,32
If sin θ=12=sinπ6, then
θ=nπ+(1)nπ6
Hence, sin θ=32 not possible because 1sin θ1


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving Trigonometric Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon