Find the value of θ satisfying ∣∣ ∣∣11sin 3θ−43cos 2θ7−7−2∣∣ ∣∣ = 0
We have, ∣∣
∣∣11sin 3θ−43cos 2θ7−7−2∣∣
∣∣
⇒∣∣
∣∣01sin 3θ−73cos 2θ14−7−2∣∣
∣∣=0 [∵C1→C1−C2]
⇒7∣∣
∣∣01sin 3θ−13cos 2θ2−7−2∣∣
∣∣=0 [taking 7 common from C1]
⇒7[0−1(2−2 cos 2θ+sin 3θ(7−6)]=0 [expanding along R1]
⇒7[−2(1−cos 2θ)+sin 3θ]=0⇒−14+14 cos 2θ+7 sin 3θ=0⇒14 cos 2θ+7 sin 3θ=14⇒14(1−2 sin2θ)+7(3 sin θ−4 sin3θ)=14⇒−28 sin2θ+14+21 sin theta−28 sin3θ=14⇒−28 sin3θ+28 sin2θ−21 sinθ=0⇒4 sin3θ+4 sin2θ−3 sinθ=0⇒sin θ(4 sin2θ+4 sinθ−3)=0⇒Either sin θ=0⇒θ=nπ or 4 sin2θ+4 sinθ−3=0∴sin θ=−4±√16+488=−4±√648=−4±88=48,−128sin θ=12,−32
If sin θ=12=sinπ6, then
θ=nπ+(−1)nπ6
Hence, sin θ=−32 not possible because −1≤sin θ≤1