wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of x :
2tan115+tan116+tan11x=π4

A
10925
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1925
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
10925
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 10925
2tan1(15)+tan1(16)+tan1(1x)=π4
tan1(16)+tan1(1x)=π42tan1(15) - (1)
Now, let tan1(16)=α+tan1(1x)=β and tan1(15)=θ
On taking tan on both the sides in equation (1)
we, get,
tan(α+β)=tan(π42θ) - (2)
We know tan(θ1+θ2)=tanθ1+tanθ21tanθ1tanθ2tan(θ1θ2)=tanθ1tanθ21+tanθ1tanθ2⎪ ⎪ ⎪⎪ ⎪ ⎪formulae
Using above formulae in equation (2), we get
tan(α)+tanβ1tanαtanβ=tan(π4)tan2θ1+tan(π4)tan2θ
tan(tan116)+tan(tan1(1x))1tan(tan116)tan(tan1(18))=(tan(tan1)=x)
16+1x1161x=12tanθ1tan2θ1+2tanθ1+tan2θ [tan2θ=2tanθ1tanθ]
16+1x116x=1tan2(tan1(15))2tan(tan1(15))1+tan2(tan1(15))+2tan(tan1(15))
x+66x1=1125251+125+225
Solving we get value of x as
x=10925




flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identity- 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon