The correct option is
A 109252tan−1(15)+tan−1(16)+tan−1(1x)=π4
tan−1(16)+tan−1(1x)=π4−2tan−1(15) - (1)
Now, let tan−1(16)=α+tan−1(1x)=β and tan−1(15)=θ
On taking tan on both the sides in equation (1)
we, get,
tan(α+β)=tan(π4−2θ) - (2)
We know tan(θ1+θ2)=tanθ1+tanθ21−tanθ1tanθ2tan(θ1−θ2)=tanθ1−tanθ21+tanθ1tanθ2⎫⎪
⎪
⎪⎬⎪
⎪
⎪⎭formulae
Using above formulae in equation (2), we get
tan(α)+tanβ1−tanαtanβ=tan(π4)−tan2θ1+tan(π4)tan2θ
tan(tan−116)+tan(tan−1(1x))1−tan(tan−116)tan(tan−1(18))=(∵tan(tan−1)=x)
16+1x1−16−1x=1−2tanθ1−tan2θ1+2tanθ1+tan2θ [∵tan2θ=2tanθ1−tanθ]
16+1x1−16x=1−tan2(tan−1(15))−2tan(tan−1(15))1+tan2(tan−1(15))+2tan(tan−1(15))
x+66x−1=1−125−251+125+225
Solving we get value of x as
x=10925