wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of x:
2tan1(sinx)=tan1(2sec2x),0<x<π2.

Open in App
Solution

Given, 2tan1(sinx)=tan1(2sec2x),0<x<π2.

L.H.S.=2tan1sinx

We know that:
tan1A+tan1y=tan1(A+B1AB)
Therefore,
tan1sinx+tan1sinx=tan1(sinx+sinx1sin2x)
=tan1(2sinxcos2x)=tan1(2sinxsec2x)
Now,
tan1(2sinxsec2x)=tan1(2sec2x)
Since, 0<x<π2
2sinxsec2x=2sec2x

2sec2x(sinx1)=0
So, either secx=0, which is not possible
or sinx=1x=π2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon