Find the value of (x−a)3+(x−b)3+(x−c)3−3(x−a)(x−b)(x−c) when a+b+c=3x.
Open in App
Solution
(x−a)3+(x−b)3+(x−c)3−3(x−a)(x−b)(x−c) and a+b+c=3x We know that a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−ac−bc) If (a+b+c)=0, then.a3+b3+c3=3abc Here,a=x−a b=x−b c=x−c and a+b+c=x−a+x−b+x−c=3x−(a+b+c)=3x−3x=0 Thus,(x−a)3+(x−b)3+(x−c)3−3(x−a)(x−b)(x−c) =0