The correct option is A (83,56)
x−2y=1 ----- (1)
x+4y=6 ----- (2)
First use formula for cross multiplication method:
xb1c2−b2c1=yc1a2−a1c2=−1a1b2−a2b1
So, from equation (1) and (2) we can write the value of a, b and c.
x−2×6−4×1=y1×1−1×6=−11×4−1×−2
x−12−4=y1−6=−14+2
x−16=y−5=−16
x−16=−16
x=166=83
y−5=−16
y=−1×−56
y=56
The solution is (83,56)