The correct option is B (9,6)
x+y=15 ----- (1)
x−y=3 ----- (2)
First use formula for cross multiplication method:
xb1c2−b2c1=yc1a2−a1c2=−1a2b2−a2b1
So, from equation (1) and (2) we can write the value of a,b and c.
x1×3−(−1)×15=y15×1−1×3=−11×(−1)−1×1
x3+15=y15−3=−1−1−1
x18=y12=−1−2
x18=−1−2
x=−18−2=9
y12=−1−2
y=−12−2
y=6
Thus the required solution is (9,6)