The correct option is D 1/e
y=xx
Or
lny=xlnx
Now differentiating with respect to x, we get
y′1y=ln(x)+1
Or
dydx=y(ln(x)+1)
=xx(ln(x)+1)
Now for the critical points dydx=0
Or
xx(ln(x)+1)=)
However
xx cannot be equal to 0.
Thus we are left with
ln(x)+1=0
x=e−1
f"(x)
=xx−1+xx(ln(x)+1)2
=xx[1x+(ln(x)+1)2]
Now
f"(e−1)
=(1e)1e.e
Thus
f"(e−1)>0 ...(minima).
Hence f(x) attains a minimum value at x=1e.