Find the value of xϵ(0,π) which satisfies the equation sin x +√3 cos x = √2
When we get equations of the form a sinθ+bcosθ=c, we put a = r cos A and b = r sin A. This is similar
to the method we follow while finding the maximum value of a sin θ + b cosθ
We divide and multiply by √a2+b2 to get terms like cos (A∓B) or sin(A∓B) on one side.
The given expression is
Sin x + √3 cos x = √2
⇒ we will divide and multiply by √(√3)2+1 = 2
⇒ 2(sinx×12+√32cosx)=√2
Now we will replace 12and√32 by cos A or sin A.
⇒ sin x × sin π6+cosπ6cosx=√22
⇒ cos (x−π6)=cosπ4
⇒ x - π6=2nπ∓π4
We will split the expressions into x=2nπ−π4+π6orx=2nπ+5π12
The value of x which lie in (0,π)is5π12 (we get this by putting n = 1, 2 ............)