log2(5.2x+1),log4(21−x+1)and1 are in AP.
Common difference d=a2−a1=a3−a2
∴log4(21−x+1)−log2(5.2x+1)=1−log4(21−x+1)
⇒log4(21−x+1)+log4(21−x+1)=log22+log2(5.2x+1)[logaa=1]
⇒2log4(21−x+1)=log22+log2(5.2x+1)
⇒22⋅log2(21−x+1)=log2(2(5.2x+1))
[Since,lognba=nlogba & logca+logcb=logc(ab)]
∴21−x+1=5.2x+1+2
⇒2⋅12x=10⋅2x+1
Let 2x=y
∴2y=10y+1
⇒10y2+y−2=0
⇒10y2+5y−4y−2=0
⇒5y(2y+1)−2(2y+1)=0
⇒(5y−2)(2y+1)=0
⇒y=25ory=−12
⇒2x=25or2x=−12
∴2x=25(Since exponent of any real number can never be a negative value).
Applying log2 on both sides,
log2(2x)=log2(25)
⇒x=log22−log25
⇒x=1−log25