The correct option is D x≤0 or x≥6
Best way to solve this problem is by checking for different values of x.
For x = 0, |x - 2| + |x - 3| + |x - 4| = 9 =9 is true.
And for x = 7, |x - 2| + |x - 3| + |x - 4| = 12 is greater than 9.
Hence, option (a), (b), (c) can be eliminated.
∴ Option (d) is correct answer.
Alternatively:
Case I : If x ≥ 4
x - 2 + x - 3 + x - 4 ≥ 9
or, 3x ≥ 18 or, x ≥ 6 . . . (1)
Case II : 3 ≤ x < 4
x - 2 + x - 3 - x + 4 ≥ 9
x ≥ 10; not possible.
Case III: If 2 ≤ x < 3
x - 2 - x + 3 - x + 4 ≥ 9
-x ≥ 4
x ≤ -4, not possible.
Case IV: If x < 2
- x - 2 - x + 3 - x + 4 ≥ 9
- 3x ≥ 0
⇒ x ≤ 0 . . . (4)
So, from equation (1), (2) (3) and (4), x ≤ or x ≥ 6