We have A(3,2,1); B(4,x,5); C(4,2,—2) and D(0,5,—1) as the given points. AD now,
−−→AB= position vector of B — position vector of A
=(4ˆi+xˆj+5ˆk)−(3ˆi+2ˆj+ˆk)=ˆi+(x−2)ˆj+4ˆk
−−→AC = position vector of C — position vector of A
= (4ˆi+2ˆj−2ˆk)−(3ˆi+2ˆj+ˆk)=ˆi+0ˆj−3ˆk
−−→AD = position vector of D — position vector of A
=(6ˆi+5ˆj−ˆk)−(3ˆi+2ˆj+ˆk)=3ˆi+3ˆj−2ˆk
Since, A. B. C and D arc coplanar. then
[−−→AB−−→AC−−→AD]=0
∣∣
∣∣1(x−2)410−333−2∣∣
∣∣=0
⇒1[0+9]−(x−2)[−2+9]+4[3−0]=0
⇒9−7(x−2)+4×3=0
⇒7x=35
⇒x=5