The correct option is B x=cosx
y=x1+xtanx
y will be maximum when its reciprocal is minimum.
So reciprocal of y is 1y=1+xtanxx=1x+tanx
Let z=1x+tanx
∴dzdx=−1x2+sec2x
For maximum or minimum,
dzdx=0
∴1x2=sec2x
∴x=cosx
Now, d2zdx2=2x3+2secxsecxtanx=+ive (∵0≤x≤π2)
Hence z is minimum when x=cosx
So, y is maximum at x=cosx.