Find the value of xi, if the distance between the points (xi,2) and (3,4) is 8.
The correct option is A (3±2√15)
Given points (x1,y1)=(xi,2) & B(x2,y2)=(3,4)
Let d is the distance between point A & B . So d=8
⇒d=√(x2−x1)2+(y2−y1)2
8=√(3−xi)2+(4−2)2
taking square on both side,
64=(3−xi)2+(4−2)2
64=9−6xi+(xi)2+(2)2
(xi)2−6xi−51=0
Now, discriminant D=√b2−4ac
Here b=−6 , a=1 ,c=−51
so, d=√(−6)2−4(1)(−51)=√36+204
d=√240>0
Thus, xi=−b±√d2a
=−(−6)±√2402(1)
=6±4√152
∴xi=3±2√15