Find the value of x if 8256=(x5)6
4
8
2
16
We know that 8=23
82=(23)2=26 [∵(am)n=amn]
8256=2656=(25)6 [∵ambm=(ab)m]
Given that, 8256=(x5)6
⇒(25)6=(x5)6
⇒25=x5
⇒x=2
If x=1(2−√3), then find the value of (x3−2x2−7x+5).
XP and XQ are tangents from an outside point X. If XP = 8 cm and ∠PXQ = 600, find the length of the chord.