wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of x, If
tan1(1x1+x)=12tan1x, x>0

Open in App
Solution

tan11x1+x=12tan1x

2tan11x1+x=tan1x .......(1)

We know that 2tan1x=tan1(2x1x2)

Replacing x by 1x1+x

2tan1(1x1+x)=tan1⎜ ⎜ ⎜ ⎜ ⎜2(1x1+x)1(1x1+x)2⎟ ⎟ ⎟ ⎟ ⎟

=tan1⎢ ⎢ ⎢ ⎢ ⎢ ⎢2(1x)(1+x)(1+x)2(1x)2(1+x)2⎥ ⎥ ⎥ ⎥ ⎥ ⎥

=tan1[2(1x)(1+x)×(1+x)(1+x)2(1x)2]

=tan1[2(1x)(1+x)(1+x)2(1x)2]

=tan1[2(1x2)1+x2+2x1x2+2x]

=tan1[2(1x2)4x]

=tan1[1x22x]

2tan11x1+x=tan1[1x22x]
From (1)

2tan1(1x1+x)=tan1x

Putting value

tan1(1x22x)=tan1x

1x22x=x

1x2=2x2

1=2x2+x2

3x2=1

x2=13

x=±13

x=13 is not possible because

Given that x>0

Hence x=13


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Principal Solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon