wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of x, if tan1(2x1x2)+cot1(1x22x)=2π3,x>0.

Open in App
Solution

tan1(2x1x2)+cot1(1x22x)=2π3

tan1(2x1x2)+tan1(2x1x2)=2π3

2tan1(2x1x2)=2π3

tan1(2x1x2)=π3

2x1x2=tanπ3

2x1x2=3

2x=33x2

3x2+2x3=0

x=2±3+4×3×323

x=2±3+1223

x=2±1523
Since x>0, we have x=2+1523

x=2+1523

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon