wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of x
If,tan1(x1)+tan1x+tan1(x+1)=tan13x

Open in App
Solution

Given:tan1(x1)+tan1(x)+tan1(x+1)=tan1(3x)

tan1(x1)+tan1(x)=tan1(3x)tan1(x+1)

tan1[(x1)+x1(x1)x]=tan1[3x(x+1)1+3x(x+1)]

2x11x2+x=2x11+3x2+3x

(2x1)(1+3x2+3x)=(1x2+x)(2x1)

(2x1)[(1+3x2+3x)(1x2+x)]=0


(2x1)[1+3x2+3x1+x2x]=0

(2x1)[4x2+2x]=0

(2x1)2x(2x+1)=0

(2x1)=0,2x=0,(2x+1)=0

2x=1,x=0,2x=1

x=12,x=0,x=12

x=0,±12



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 4
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon