The correct option is B 379
Given:
14x2−6x+810x2+4x+7=7x−35x+2
Let, 14x2−6x+810x2+4x+7=7x−35x+2=k
multiplying predecessor and successor of RHS by −2x and LHS by 1. We get:
14x2−6x+810x2+4x+7=−2x(7x−3)−2x(5x+2)=k
Using theorems of equal ratios:
ab=cd=al+cmbl+dm
⇒(14x2−6x+8)+[−2x(7x−3)](10x2+4x+7)+[−2x(5x+2)]=k
⇒(14x2−6x+8)+(−14x2+6x)](10x2+4x+7)+(−10x2−4x)=k
⇒k=87
Now, using the LHS of the equation:
7x−35x+2=k
⇒7x−35x+2=87
⇒49x−21=40x+16
⇒49x−40x=16+21
⇒9x=37
⇒x=379