wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of x satisfying the equation |||x2x+4|2|3|=x2+x12

Open in App
Solution

x2x+423=x2+x12
Now consider
f(x)=x2x+4
Discriminant is 116=15<0 . Hence f(x)=x2x+4>0 for xϵR
x2x+423=x2+x12x2x+23=x2+x12
Again consider ,
f(x)=x2x+2
Discriminant is 18=7<0. Hence f(x)=x2x+2>0xϵR
x2x+23=x2+x12x2x1=x2+x12
Again consider,
f(x)=x2x1
Discriminant is 1+4=5>0
So the roots are x=1±52
Case1xϵ(152,1+52)
x2+x+1=x2+x1213=2x2x=132=6.52.54
But xϵ(152,1+52) i.e., xϵ(0.618,1.618)
x2.54 is not admissible.
Case2 x\quad \epsilon \quad (-\infty ,\cfrac { 1-\sqrt { 5 } }{ 2 } ]\cup [\cfrac { 1+\sqrt { 5 } }{ 2 } ,\infty )$
x2x1=x2+x122x=11x=5.5


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon