∣∣∣∣∣∣x2−x+4∣∣−2∣∣−3∣∣=x2+x−12Now consider
f(x)=x2−x+4
Discriminant is 1−16=−15<0 . Hence f(x)=x2−x+4>0 for ∀xϵR
∣∣∣∣x2−x+4−2∣∣−3∣∣=x2+x−12⇒∣∣∣∣x2−x+2∣∣−3∣∣=x2+x−12
Again consider ,
f(x)=x2−x+2
Discriminant is 1−8=−7<0. Hence f(x)=x2−x+2>0∀xϵR
∴∣∣x2−x+2−3∣∣=x2+x−12⇒∣∣x2−x−1∣∣=x2+x−12
Again consider,
f(x)=x2−x−1
Discriminant is 1+4=5>0
So the roots are x=1±√52
∴ Case1xϵ(1−√52,1+√52)
⇒−x2+x+1=x2+x−12⇒13=2x2⇒x=√132=√6.5≈2.54
But xϵ(1−√52,1+√52) i.e., xϵ(−0.618,1.618)
∴x≅2.54 is not admissible.
Case2 x\quad \epsilon \quad (-\infty ,\cfrac { 1-\sqrt { 5 } }{ 2 } ]\cup [\cfrac { 1+\sqrt { 5 } }{ 2 } ,\infty )$
x2−x−1=x2+x−12⇒2x=11x=5.5