wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of x:
secπ7+sec3π7+sec5π7=?

Open in App
Solution

secπ7sec2π7sec3π7=1cosπ7cos2π7cos3π7=sinπ7sinπ7cosπ7+cos2π7cos3π7=2sinπ72sinπ7cosπ7+cos2π7cos3π7=2×2sinπ72×sin2π7cos2π73π7=4sinπ7sin4π7.cos3π7andcos3π7=cos(π3π7)=cos4π7Then,4sinπ7sin4π7.cos3π7=2×4sinπ72×sin4π7cos3π7=8×sinπ7sin(8π7)againsin(8π7)=sin(π+π7)=sin(π7)Now,8×sinπ7sin(8π7)=8×sinπ7(sin(8π7))=8

Hence,the value of x is 8.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Summation by Sigma Method
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon