We have (−2)3×(−2)−6=(−2)2x−1.
We know that, am×an=am+n
Now by using above law we can write given equation as,
(−2)3+(−6)=(−2)2x−1
⇒(−2)3−6=(−2)2x−1
⇒(−2)−3=(−2)2x−1
Since, the base is same on both sides, then exponents must be the same.
⇒−3=2x−1⇒2x=−3+1
⇒2x=−2
⇒x=−1
Hence x=−1 will satisfy the given equation.