Find the value of x such that f(x)=2x3−15x2+36x+1 is an increasing function.
Open in App
Solution
f(x)=2x3−15x2+36x+1 ∴f′(x)=6x2−30x+36 ∴f′(x)=6(x2−5+6) i,e. f′(x)=6(x−3)(x−2) ∵f(x) is increasing function. ∴f′(x)≥0 6(x−3)(x−2)≥0 ∴x>3 or x<2 ∴f(x) is increasing x>3 or x<2.