Find the value of x which satisfies the equation: log15x+210+log5(2x+1)=0
Open in App
Solution
log15x+210+log5(2x+1)=0 is valid when x+2>0,x+1>0 ⇒x>−1 Changing base, we can write −log5x+210+log5(2x+1)=0,[∵log1xy=−logxy] ⇒log5x+210=log5(2x+1) ⇒x+210=2x+1⇒x=−6,3 As x>−1,∴x=3 is the solution Ans: 3