Find the value of x which satisfies the expression log2(3x−2)=log12x
Open in App
Solution
log2(3x−2)=log12x=log2xlog22−1=log2x−1[∵logba=logalogb&mloga=logam&logaa=1] ⇒3x−2=x−1 ⇒3x2−2x=1 ⇒x=1 or x=−13. But log2(3x−2) and log12x are meaningful if x>23. Hence, x=1 Ans: 1