Find the value(s) of k for which the points (3k−1,k−2),(k,k−7) and (k−1,−k−2) are collinear.
Let the given collinear points are,
A=(3k−1,k−2),B=(k,k−7) and C=(k−1,−k−2)
Since, if A(x1,y1),B(x2,y2) and C(x3,y3) are collinear then the area of triangle formed by these vertices is zero.
⇒Ar(ΔABC)=0
⇒12|x1(y2−y3)+x2(y3−y1)+x3(y1−y2)|=0
⇒x1(y2−y3)+x2(y3−y1)+x3(y1−y2)=0
⇒(3k−1)(k−7−(−k−2))+k((−k−2)−(k−2))+(k−1)(k−2−(k−7))=0
⇒(3k−1)(k−7+k+2))+k(−k−2−k+2)+(k−1)(k−2−k+7)=0
⇒(3k−1)(2k−5)+k(−2k)+(k−1)(5)=0
⇒6k2−15k−2k+5−2k2+5k−5=0
⇒4k2−12k=0
⇒4k(k−3)=0
⇒4k=0 or k−3=0
⇒k=0 or k=3.
Hence, the value of k is either 0 or 3.