wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the value(s) of k so that PQ will be parallel to RS. Given :

(i) P (2, 4), Q (3, 6), R (8, 1) and S (10, k)

(ii) P (3, -1), Q (7, 11), R (-1, -1) and S (1, k)

(iii) P (5, -1), Q (6, 11), R (6, -4k) and S (7, k2)

Open in App
Solution

Since, PQ || RS,

Slope of PQ = Slope of RS

(i) Slope of PQ = fraction numerator 6 minus 4 over denominator 3 minus 2 end fraction equals 2

Slope of RS = fraction numerator k minus 1 over denominator 10 minus 8 end fraction equals fraction numerator k minus 1 over denominator 2 end fraction

2 equals fraction numerator k minus 1 over denominator 2 end fraction k minus 1 equals 4 k equals 5

(ii) Slope of PQ = fraction numerator 11 plus 1 over denominator 7 minus 3 end fraction equals 3

Slope of RS = fraction numerator k plus 1 over denominator 1 plus 1 end fraction equals fraction numerator k plus 1 over denominator 2 end fraction

3 equals fraction numerator k plus 1 over denominator 2 end fraction k plus 1 equals 6 k equals 5

(iii) Slope of PQ = fraction numerator 11 plus 1 over denominator 6 minus 5 end fraction equals 12

Slope of RS = fraction numerator k squared plus 4 k over denominator 7 minus 6 end fraction equals k squared plus 4 k

12 equals k squared plus 4 k k squared plus 4 k minus 12 equals 0 open parentheses k plus 6 close parentheses open parentheses k minus 2 close parentheses equals 0 k equals negative 6 space a n d 2


flag
Suggest Corrections
thumbs-up
4
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Slope of Line
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon