The correct option is D max=1,min=3
y=x5−5x4+5x3−10
∴dydx=5x2(x2−4x+3)
dydx=5x2(x−1)(x−3)=0 for min. or max
∴x=0,1,3.
Now d2ydx2=20x3−60x2+30x=10x(2x2−6x+3)
So at x=0, d2ydx2=0, Hence point x=0 is neither maxima nor minima.
and (d2ydx2)x=1<0 and (d2ydx2)x=3>0
Thus point x=1 is maxima and x=3 is minima
∴ymax=−9 and ymin=−37