wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the values of a and b for which each of the following systems of linear equations has an infinite number of solutions:
2x+3y=7,(a+b+1)x+(a+2b+2)y=4(a+b)+1.

Open in App
Solution

The given system of equations:
2x + 3y = 7
⇒ 2x + 3y − 7 = 0 ....(i)
And, (a + b + 1)x + (a + 2b + 2)y = 4(a + b) + 1
⇒ (a + b + 1)x + (a + 2b + 2)y − [4(a + b) + 1] = 0 ....(ii)
These equations are of the following form:
a1x + b1y + c1 = 0, a2x + b2y + c2 = 0
Here, a1 = 2, b1= 3, c1 = −7 and a2 = (a + b + 1), b2 = (a + 2b + 2), c2 = −[4(a + b) + 1]
For an infinite number of solutions, we must have:
a1a2=b1b2=c1c2
2a+b+1=3a+2b+2=-7-4a+b+1
2a+b+1=3a+2b+2=74a+b+1
2a+b+1=3a+2b+2and3a+2b+2=74a+b+1

⇒ 2(a + 2b + 2) = 3(a + b+ 1) and 3[4(a + b) + 1] = 7(a + 2b + 2)
⇒ 2a + 4b + 4 = 3a + 3b + 3 and 3(4a + 4b + 1) = 7a + 14b + 14
⇒ a − b − 1 = 0 and 12a + 12b + 3 = 7a + 14b + 14
⇒ a − b = 1 and 5a − 2b = 11
a = (b + 1) ....(iii)
5a − 2b = 11 ....(iv)
On substituting a = (b + 1) in (iv), we get:
5(b + 1) − 2b = 11
⇒ 5b + 5 − 2b = 11
⇒ 3b = 6
⇒ b = 2
On substituting b = 2 in (iii), we get:
a = 3
∴​ a = 3 and b = 2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Graphical Solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon