wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the values of a and b for which the following system of linear equations has infinite number of solutions?

2x+3y=7;(a+b+1)x+(a+2b+2)y=4(a+b)+1


Open in App
Solution

Step 1: If the pair of linear equations has infinite number of solutions

a1a2=b1b2=c1c2

Given,

2x+3y-7=0..................................(1)(a+b+1)x+(a+2b+2)y-[4(a+b)+1]=0...................(2)

herea1=2,b1=3,c1=-7a2=a+b+1,b2=a+2b+2,c2=-[4(a+b)+1]

Step 2:Substitution of values in the condition a1a2=b1b2=c1c2 and solving by cross multiplication method

2a+b+1=3a+2b+2=-7-[4(a+b)+1]Taking,2a+b+1=3a+2b+22(a+2b+2)=3(a+b+1)2a+4b+4=3a+3b+32a+4b+4-3a-3b-3=0-a+b+1=0a-b=1.................................(3)

Taking,2a+b+1=74a+4b+12[4a+4b+1]=7[a+b+1]8a+8b+2=7a+7b+78a+8b+2-7a-7b-7=0a+b-5=0a+b=5................................(4)

Step 3:Solving the equations (3) and (4) to get the values of a and b

(3)+(4)2a=6a=3

Using equation(4)

(4)a+b=5b=5-ab=5-3b=2

Hence the values of a=3andb=2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Simultaneous Linear Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon