The correct option is C A=316 ; B=1112
Calculating for A, we get:
512−213=A
⟹A=(5−2)+(12−13)
=3+(1×32×3−1×23×2)
=3+(36−26)
=3+16
⟹A=316
Now, calculating for B, we find:
A−2112=B
⟹B=316−2112
=(3−2)+(16−112)
=1+(1×26×2−112)
=1+(212−112)
=1+112
⟹B=1112
∴A=316 ; B=1112