Find the values of a and b
if 5+2√37+4√3=a+b√3
a= 11, b = -6
Multiplying both numerator and denominator with the rationalising factor of the denominator i.e (7−4√3)
(5+2√3)(7−4√3)(7+4√3)(7−4√3)=35+14√3−20√3−8(√3√3)(7)(7)−(4×4)(√3×√3)
On comparing with a+b√3, we get a=11, b=−6