Find the values of a and b, if x2 - 4 is a factor of ax4+2x3−3x2 + bx - 4
f(x) = ax4+2x3−3x2 + bx - 4
Factors of x2−4=(x)2−(2)2
= (x+2)(x-2)
If x + 2 = 0, then x = - 2
Now, f(-2) = a(−2)4+2(−2)3−3(−2)2+b(−2)−4
16a - 16 - 12 -2b - 4
= 16a - 2b - 32
∵ x + 2 is a factor of f(x)
∴ Remainder = 0
⇒ 16a - 2b - 32 = 0
⇒ 8a - b - 16 = 0 ⇒ 8a - b = 16 .......(i)
Again x - 2 = 0, then x = 2
Now f(2) = a ×(2)4+2(2)3−3(2)2+b× 2-4
= 16a + 2b
∵ x - 2 is a factor of f(x)
∴ Remainder = 0
⇒ 16a + 2b = 0 ⇒ 8a + b = 0 .......(ii)
Adding (i) and (ii),
16a = 16 ⇒a=1616=1
From (ii) 8× 1 + b = 0 ⇒ 8 + b = 0
⇒ b = - 8
∴ a = 1, b = - 8