Let us first factorize x2−4 as follows:
x2−4=x2−22=(x−2)(x+2)(∵a2−b2=(a−b)(a+b))
It is given that x2−4 is a factor of the polynomial f(x)=ax4+2x3−3x2+bx−4 that is (x−2)(x+2) are the factors of f(x)=ax4+2x3−3x2+bx−4 and therefore, x=−2 and x=2 are the zeroes of f(x).
Now, we substitute x=−2 and x=2 in f(x)=ax4+2x3−3x2+bx−4 as shown below:
f(−2)=a(−2)4+2(−2)3−3(−2)2+b(−2)−4⇒0=16a−16−12−2b−4⇒0=16a−2b−32⇒2(8a−b−16)=0⇒8a−b−16=0⇒8a−b=16....(1)
f(2)=a(2)4+2(2)3−3(2)2+b(2)−4⇒0=16a+16−12+2b−4⇒0=16a+2b⇒2(8a+b)=0⇒8a+b=0....(2)
Adding equations 1 and 2:
(8a+8a)+(b−b)=16+0⇒16a=16⇒a=1
Substituting the value of a in equation 1, we get:
8a−b=16⇒(8×1)−b=16⇒8−b=16⇒−b=16−8⇒−b=8⇒b=−8
Hence, a=1 and b=−8.